Abstract:
การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อศึกษาและค้นคว้าอัลกอริทึมในการรู้จำอารมณ์จากเสียงพูดภาษาไทย งานวิจัยประเภทนี้รู้จักกันโดยทั่วไปว่า “การคณนาเชิงอารมณ์” ซึ่งสามารถลดช่องว่างในการสื่อสารระหว่างผู้ใช้กับคอมพิวเตอร์หรือช่วยพัฒนาความฉลาดทางด้านอารมณ์
ให้กับคอมพิวเตอร์ เพื่อให้คอมพิวเตอร์สามารถเลือกตอบสนองกับมนุษย์ได้อย่างเหมาะสมยิ่งขึ้นในงานวิจัยนี้ได้นาเสนอวิธีคัดเลือกคุณลักษณะแบบฟิชเชอร์สกอร์ (Fisher’s Score) สำหรับการจาแนกอารมณ์ 4 อารมณ์ ได้แก่ อารมณ์เศร้า, โกรธ, มีความสุข และ กลัว ผู้วิจัยได้
เลือกใช้เสียงพูดภาษาไทยเนื่องด้วยว่าในภาษาไทย ระดับเสียงพูดที่ใช้ จะมีผลต่อความหมายที่เปลี่ยนไปของคานั้น ๆ ซึ่งถือว่ามีความท้าทายและน่าสนใจอย่างมากในการจำแนกอารมณ์ วิธีที่นำเสนอจะแบ่งออกเป็น 2 ส่วนด้วยกัน ในส่วนแรก เสียงพูดภาษาไทยจะถูกสกัดเพื่อดึงเอา 14
คุณลักษณะเด่นของสัญญาณเสียงออกมา แล้วจึงนำมาคัดเลือกเฉพาะคุณลักษณะที่เหมาะสมกับการรู้จำเสียงภาษาไทยโดยใช้วิธีคัดเลือก Fisher’s Score ส่วนสุดท้าย คุณลักษณะที่คัดเลือกแล้วจะผ่านโครงข่ายการเรียนรู้ 2 แบบเพื่อเปรียบเทียบประสิทธิภาพในการจำแนก จากผลการ
ทดลองที่ได้แสดงให้เห็นว่า การคัดเลือกคุณลักษณะแบบฟิชเชอร์สกอร์กับวิธีจำแนกผ่านโครงข่ายประสาทเทียมแบบเพอร์เซฟตรอนหลายชั้น ให้อัตราการรู้จำอารมณ์จากเสียงพูดภาษาไทยสูงถึง 95%