Abstract:
สภาวะที่เหมาะสมในการเกิดปฏิกิริยาออกซิเดชันของ HMF เป็น FDCA โดยใช้ตัวเร่งปฏิกิริยา 1% โดยน้ำหนักของโลหะแพลเลเดียมบนถ่านกัมมันต์ (Pd/AC) โดยมีปัจจัยที่ส่งผลต่อการเกิดปฏิกิริยา ได้แก่ ตัวทำ ละลาย (H2O และ CH3CN) อุณหภูมิในการเกิดปฏิกิริยา (80-150 o C) สารออกซิไดซ์ (O2 5 barและ TBHP, อัตราส่วนของ TBHP: HMF = 9 :1) และความเข้มข้นของ Na2CO3 (0, 0.06 และ 0.3 M) ในขณะที่เวลาในการทำปฏิกิริยาคงที่ที่ 24 hr พบว่า ตัวทำละลาย H2O และ CH3CN มีสภาวะที่เหมาะสมแตกต่างกันในกรณีของตัวทำละลาย H2O ให้ร้อยละผลได้ของปฏิกิริยาออกซิเดชัน HMF อยู่ที่ 53% ภายใต้อุณหภูมิ 70 o C ความเข้มข้นของ Na2CO3 0.03 M และอัตราส่วนของ HMF: TBHP (9 :1) ในกรณีตัวทำละลาย CH3CN ให้ร้อยละผลได้ของปฏิกิริยาออกซิเดชันของ HMF อยู่ที่ 42% ภายใต้อุณหภูมิ 110 o C อัตราส่วนของ TBHP: HMF (9 :1) โดยปราศจากการใช้ Na2CO3 โดยสภาวะที่ใช้ตัวทำละลาย H2O เป็นมิตรต่อสิ่งแวดล้อม ดังนั้น โลหะแพลเลเดียมผสมกับโลหะทรานซิชัน ตัวที่สอง (เช่น แมงกานีส นิกเกิลและโคบอลต์) บนถ่านกัมมันต์ถูกเตรียมโดยวิธีการตรึงอนุภาคคอลลอยด์ขนาดนาโน โดยตัวเร่งปฏิกิริยาโลหะ แพลเลเดียมผสมกับโลหะทรานซิชัน ตัวที่สองมีประสิทธิภาพด้อยกว่า เมื่อเทียบกับตัวเร่งปฏิกิริยา Pd/AC โดยตัวเร่งปฏิกิริยา Pd/AC ให้ผลการเลือกเกิด FFCA> HMFCA>FDCA ในขณะที่ตัวเร่งปฏิกิริยาอื่น ๆ เกิดปฏิกิริยาออกซิเดชันของ HMF เป็น FDCA ได้ไม่ดีแต่ตัวเร่งปฏิกิริยาเหล่านี้มีการเลือกเกิดผลิตภัณฑ์ข้างเคียงเท่านั้น เช่น HMFCA>FFCA สิ่งเหล่านี้เกิดขึ้นจากตัวเร่งปฏิกิริยาโลหะแพลเลเดียมผสมกับโลหะทรานซิชัน ตัวที่สองบนถ่านกัมมันต์เกิดการปนเปื้อนของ PVA ซึ่งเกาะล้อมรอบอนุภาคของโลหะส่งผลให้การเร่งปฏิกิริยาของโลหะเกิดขึ้นได้ไม่ดีนอกจากนั้นขนาดเฉลี่ยของ Pd/AC มีขนาด 6 nm ทำให้มีการกระจายตัวที่ดีกว่าตัวเร่งปฏิกิริยาตัวอื่น ๆ (14-24 nm)