DSpace Repository

ระบบพยากรณ์และบริหารความเสี่ยงด้านราคาสินค้าโภคภัณฑ์ กรณีศึกษา น้ำมันดิบ

Show simple item record

dc.contributor.author เกรียงศักดิ์ วณิชชากรพงศ์
dc.contributor.other มหาวิทยาลัยบูรพา. คณะโลจิสติกส์
dc.date.accessioned 2023-02-13T04:08:02Z
dc.date.available 2023-02-13T04:08:02Z
dc.date.issued 2565
dc.identifier.uri http://dspace.lib.buu.ac.th/xmlui/handle/1234567890/5126
dc.description.abstract งานวิจัยนี้เสนอระบบการพยากรณ์ราคาน้ำมันล่วงหน้า โดยการวิเคราะห์ข้อมูลปัจจัยพื้นฐานต่างๆ ที่เกี่ยวข้อง และข้อมูลข่าวจากสื่อออนไลน์ที่ส่งผลต่อราคาน้ำมัน เพื่อพยากรณ์ราคาเพื่อใช้ในการตัดสินใจ และบริหารความเสี่ยงต่อการทำการค้าน้ำมันดิบ โดยการออกแบบ และทดสอบโครงข่าย ประสาทเทียมสำหรับเรียนรู้ข้อมูลปัจจัยต่าง ๆ เพื่อศึกษาแบบจำลองพารามิเตอร์ภายในแบบจำลอง และความยืดหยุ่นของที่เหมาะสมต่อข้อมูลปัจจัยต่าง ๆ ที่ส่งผลต่อการพยากรณ์ราคาน้ำมันซึ่งประเมินประสิทธิภาพของแบบจำลองพยากรณ์จากค่าความคาดเคลื่อนของข้อมูล seen และ unseen โดย การวิเคราะห์และออกแบบโครงข่ายประสาทเทียมแบ่งออกเป็นสองส่วนคือ ส่วนแรกการพยากรณ์ราคา น้ำมันดิบของ 1 วันถัดไป ที่นำปัจจัยพื้นฐานที่สามารถค้นหาข้อมูลที่สามารถสืบค้นในอินเตอร์เน็ต โดย ประกอบไปด้วย 2 กลุ่มคือ ข้อมูลอัตราแลกเปลี่ยนสกุล และกลุ่มข้อมูลดัชนีหุ้นสำคัญในตลาดหุ้นโลก นำมาวิเคราะห์ผลความสัมพันธ์ต่อราคาน้ำมัน และออกแบบโครงข่ายประสาทเทียมที่เหมาะสมในการ เรียนรู้ในด้านของประสิทธิภาพของการพยากรณ์และความเร็วในเรียนรู้ของแบบจำลอง ได้แก่ จำนวน node เท่ากับ 128, 128, 64 ตามลำดับ โดยประสิทธิภาพการพยากรณ์ทดสอบจากค่าความคาดเคลื่อน MAE ในข้อมูล train set กับราคาน้ำมันดิบ WTI เท่ากับ 0.365 และค่า MAPE เท่ากับ 1.145% และ ทดสอบกับข้อมูล test set (unseen) มีค่าความคาดเคลื่อนในการพยากรณ์MAE เท่ากับ 1.512 และค่า MAPE เท่ากับ 4.86% และส่วนที่สองเป็นการออกแบบโครงข่ายประสาทเทียมเพื่อพิจารณาข้อมูลปัจจัยที่ ส่งผลต่ออารมณ์ความรู้สึก (sentiment data) ที่อาจส่งผลต่อราคาน้ำมันดิบ โดยการสร้าง keyword และการให้ประมวลผลน้ำหนักของคำที่อาจส่งผลต่อราคาเพื่อนำมาเป็น input feature ของโครงข่าย ประสาทเทียมใช้Adam algorithm รวมถึงประยุกต์ใช้เทคนิค stochastic gradient descent และ regularization ในการเรียนรู้ของโครงข่ายประสาทเทียมในการพิจารณทั้งปัจจัยพื้นฐาน และข้อมูลข่าว โดยผลการทดสอบประสิทธิภาพจากค่าความคาดเคลื่อนในการพยากรณ์ราคาน้ำมันล่วงหน้าระยะสั้น 1, 2, 3 และ 5 วัน กับข้อมูล test set ซึ่งเป็นข้อมูล unseen มีค่า MSE เท่ากับ 3.20, 3.30, 4.22, 4.89 ตามลำดับ และมีMAPE เท่ากับ 2.15% กับการพยากรณ์ราคาถัดไป 1 วัน MAPE เท่ากับ 2.25% กับการ พยากรณ์ราคาถัดไป 2 วัน MAPE เท่ากับ 2.48% และ 2.51% กับการพยากรณ์3 และ 5 วันตามลำดับ จากผลการทดลองแสดงให้เห็นถึงความสามารถในการพยากรณ์ที่สามารถนำไปประยุกต์ใช้ในการวางแผน และปฏิบัติงานจริง รวมถึงการนำไปพัฒนาระบบช่วยในการตัดสินใจจากการพยากรณ์ราคาล่วงหน้าระยะ สั้นได้ th_TH
dc.description.sponsorship โครงการวิจัยประเภทงบประมาณเงินรายได้ งานวิจัยพัฒนาและถMายทอด เทคโนโลยี จากกองทุนเพื่อการวิจัย เงินอุดหนุนทุนการวิจัย คณะโลจิสติกส์ มหาวิทยาลัยบูรพา th_TH
dc.language.iso th th_TH
dc.publisher คณะโลจิสติกส์ มหาวิทยาลัยบูรพา th_TH
dc.title ระบบพยากรณ์และบริหารความเสี่ยงด้านราคาสินค้าโภคภัณฑ์ กรณีศึกษา น้ำมันดิบ th_TH
dc.type Research th_TH
dc.author.email kriangsv@buu.ac.th th
dc.year 2565 th_TH
dc.keyword น้ำมันดิบ th_TH
dc.keyword ราคาสินค้า th_TH
dc.keyword สินค้า th_TH


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account