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The Ussing chamber used in this experiment. The setup consists of
two parts, i.e., the tissue chambers filled with bathing solution, and
the electrical circuit for measurement of epithelial electrical
parameters, including transepithelial potential difference (V; or PD),
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1.5 MINUNIUITIUNIIN/A1958UA (information) ﬁLﬁEl')‘illaﬂ

1.5.1 Vitamin D and intestinal calcium absorption

In normal condition, absorption of dietary Ca” across intestinal epithelium via
transcellular mechanisms occurs predominantly in the duodenum. Transcellular transport is
generally occurs via a three-step process consisting of passive entry of Ca”" across the apical
membrane, the transcellular movement of Ca’* from the point of entry to the basolateral
membrane (BLM) and its extrusion from the BLM into the circulatory system. Regulation of
epithelial ca’ transport by 1,25(0OH),D; is a commonly accepted. The regulation through
genomic actions involving the classical vitamin D receptor (VDR) is widely recognized, the
non-genomic regulation through a separate membrane receptor, which we have identified as
1,25D5-MARRS (membrane-associated, rapid response, steroid hormone-binding) receptor. For
classical action through VDR, calcium is transported across the intestinal epithelium via
paracellular and transcellular pathways. However, the transcellular pathway becomes more
significant during low calcium intake or increased calcium demand, e.g., in pregnancy and
lactation [Charoenphandhu et al. 2009; Wasserman 2004; Zhu et al. 1998].

Aging has been associated with lower intestinal ca”’ absorption that starts ~65-70
years [Gallagher 2013; Nordin 2004]. As a result, it leads to negative calcium balance,
secondary hyperparathyroidism, increased bone loss, and osteoporosis. Although several
factors affect intestinal calcium absorption, e.g., amount of food intake, protein intake, the
main regulator is 1,25(0OH),D; (an active form of vitamin D) acting through vitamin D receptor
(VDR). The reduction of calcium absorption might be resulted from several causes, i.e.,
decreased renal production of 1,25(0OH),D; by the aging kidney, decreased VDR, and
decreased skin production of vitamin D [Gallagher 2013]. Human study the effects of age on
serum 1,25(0OH),D; in normal women revealed the advanced age the lower serum
1,25(0H),Ds level [Kinyamu et al. 1997]. Recent post hoc analysis in post-menopausal
women had identified age, 1,25(0OH),Ds, and dietary calcium and fat were associated with
Ca’ absorption, whereas serum 25(0OH)D levels were not [Ramsubeik et al. 2014], suggesting

that beyond the traditional focus on Ca’* and 1,25(0OH),Ds, some other factors also

influence intestinal Ca2+ absorption. We postulate the intestine-produced local

hormone FGF-23 might play role in this milieu.

1.5.2 Fibroblast growth factor-23 (FGF-23)

FGF-23 is a 32-kDa with an N-terminal region, containing the FGF-homology domain

and a novel 71-amino acid C-terminus. FGF23 function is associated with angiogenesis,

N 4
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wound healing and embryonic development. [toh and Ornitz [2004] categorized 22 FGFs into
three subfamilies, i.e.,

1) Canonical FGFs (FGF-1 to FGF-10, FGF-16 to FGF-18, FGF-20 and FGF-22) are
secreted proteins that bind and activate FGF receptors (FGFRs) in a paracrine
manner.

2) Hormone-like FGFs [FGF-15 (in mice)/FGF-19 (in human), FGF-21 and FGF-23]
act on target cells elsewhere in the body in an endocrine manner.

3) Intracellular FGFs (FGF-11 to FGF-14) act in FGFR-independent manner.

FGF-23 is secreted from bone cells called osteocytes and osteoblasts [Liu et al. 2003;
Mirams et al. 2004; Yamashita et al. 2000]. Normally, the production of FGF-23 by
osteoblasts and osteocytes is quite small except in hypophosphatemic rickets/osteomalacia
and chronic kidney disease patients [Liu et al.,, 2007, Pereira et al,, 2009]. In normal
conditions, intact FGF-23 concentration in human is ~10-30 pg/mL, whereas, the level in

mouse is higher, about 110 pg/mL [Imel et al. 2006; Stubbs et al. 2012; Wolf 2012].

FGF23/Klotho axis

{ 2
f1250H) 00— 8 # —»! S%A 1
@
l Small intestine l PTG
\~ —— )

Bone t #EF2?3 - :giQF,’TH
‘ Klotho:FGFR1
Klotho:Na*/K*-ATPase
Proximal-distal
tubul

25-OH-D ubule
(' 1%-hydroxylase lsrc34a1 o cedback?  Kiotho:FGFR1

— i Secreted Klotho

1,25(0H),D Slc34a3 Klotho:TRPV5
Kidney nephron, Kidney nephron, ‘
proximal tubule distal tubule
TCaE.
PO,
Urine

Fig. 2 Interrelation among FGF-23, PTH, 1,25(0OH),D; and Klotho [Quarles 2008].

Once released, FGF-23 targets the kidney, leading to reductions in serum phosphate
and 1,25(0H),D levels by stimulating the fractional excretion of phosphate and reducing 1a-
hydroxylase activity. The receptor for FGF-23 in the kidney is a Klotho-FGF receptor 1
(FGFR1) complex located in the distal tubule. FGF-23 also decreases the kidney expression

of Klotho, which diminishes renal tubular calcium reabsorption via its interactions with
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transient receptor potential cation channel, subfamily V, member 5 (TRPV5). FGF-23 may
also directly target the parathyroid gland (PTG) to reduce PTH secretion. FGF-23 is the
principal phosphaturic hormone and may function to counter the hypercalcemic and
hyperphosphatemic effects of excess 1,25(0OH),Ds; through reductions in PTH and elevations
in FGF-23 levels (Fig. 2) [Quarles 2008; Shimada et al. 2004].

1.5.3 FGF-23 and intestinal calcium transport

The intestinal absorption of calcium is regulated by several factors, including PTH
and 1,25(0H),D5. Previously, the major functions of FGF-23 on ion transporters are well
established in the kidney, but its functions in the intestine are not well understood. FGF-23
can regulate Pi and 1,25(0OH),D; homeostasis by downregulation of renal Pi transporters
(NaPi-lla and NaPi-lic), thereby reducing renal Pi reabsorption [Segawa et al. 2002; Shimada et
al. 2005]. It also suppresses the expression of 1a(OH)ase and enhances the expression of
24(OH)ase in the kidney to decrease circulating levels of 1,25(0H),Ds.

Normally, 1,25(0OH),D; enhances intestinal calcium and Pi absorption by stimulating
the expression of intestinal calcium and Pi transporters, e.g., transient receptor potential
vanilloid family calcium channel (TRPV)-5, TRPV6, plasma membrane Ca2+—ATPase isoform 1b
(PMCAyp), calbindin-Dg, and NaPi-llb (transporter located on the apical membrane of
enterocytes, responsible for Pi absorption). Therefore in normal conditions, FGF-23 indirectly
affects intestinal Ca”" absorption in an 1,25(0H),Ds;-dependent manner. Several investigations
showed a link between FGF-23 and calcium homeostasis. For instance, plasma calcium
levels could regulate FGF-23 production [Kobayashi et al. 2006; Shimada et al. 2004], and
FGF-23, their receptors and co-receptor are also expressed in the small intestine [Hagiwara
et al. 2009; Khuituan et al. 2012; Wang and Sun 2009]. Recently, Khuituan and colleagues
[2012] demonstrated the role of FGF-23 on mouse duodenal calcium absorption and found
that FGF-23 could directly abolish 1,25(0OH),Ds-induced duodenal calcium absorption,
therefore, FGF-23 is supposed to be a novel calcium regulating hormone that acted directly
on the small intestine.

As mention earlier, to elicit an action, FGF-23 binds to coreceptor Klotho and FGFR1
complex. Klotho is originally identified as a putative aging-suppressor gene [Xu and Sun
2015]. Knockout of a-Klotho in mice accelerated premature aging including soft tissue
calcification, arteriosclerosis, skin atrophy, gonadal dysplasia, infertility, hyposlycemia, severe
hyperphosphatemia, osteoporosis, emphysema, and an overall shorter life span [Kuro-o et

al. 1997]. On the other hand, over expression of a-Klotho slowdowns aging as well as
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extended the life span by 20-30% [Kuro-o et al. 1997; Kurosu et al. 2005; Masuda et al.
2005]. Full length of Klotho also serves as a coreceptor to enhance FGF-23 signaling.

Therefore, it is hypothesized that the reduction of intestinal calcium absorption may

be contributed by FGF-23 and Klotho in age-dependent manner.

(2) /ANUUNITINY WANITIALBAUITIYNANITIVY
2.1 WNUNISANYN
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® ngu 1 Control (§1431 5 n) : nylesun1s@a vehicle @3 1,25(0H),D; na3fedn 3
me/kg 9:1 propylene glycol-ethanol tilsiRans
® ngu 2 Vitamin D treatment (39131 5 n) : viyazgnaa 1 pg/mL 1,25(0H),Ds winld
Awtledl 72, 48 uay 24 Flusneunisinnisgaduuaaiden Taod1damaisnisves

Khuituan tagaady [2012]

® gy 3 Vitamin D treatment + FGF-23 antibody (7491 5 n) : ¥aggnan 1 ug/mL
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71 2) uswnenensal Sinnsld FGF-23 antibody lu Ussing chamber lugasfivngaléan
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2. NM3fAn¥IMavas FGF-23 sianisvudwuaadeuludlddualontiuniugaseny
alddrugloftuazgniluAnuinisgadunea@en (Ca flux) Msuuy transcellular way

paracellular pathway faginaiia Ussing luusiagdiseny laudnevas transepithelial resistance

(TER), short-circuit current (Isc), transepithelial potential difference (PD) lusae

2.2 Experiment procedure

2.2.1 Animals

One-month-old female GK rats and age-matched wild-type (WT) Wistar rats were
used, while in the insulin treatment experiment, 6-week-old female GK and WT rats were
used. All rats were purchased from the Center for Laboratory Experimental Animals (CLEA),
Japan. They were housed in stainless steel cages under 12:12 h light-dark cycle. Room
temperature was ~22-24 °C with relative humidity of ~50-60%. They were fed standard
chow (Perfect Companion Co., Ltd., Thailand) and reverse osmosis water ad libitum. All
animals were cared for in accordance with the Mahidol University policy for the care and
use of animals for scientific purposes. This study has been approved by the ethics
committee of the National Laboratory Animal Center (NLAC) and the Animal Care and Use
Committee of the Faculty of Science, Mahidol University.

2.2.2 Anesthesia and euthanasia

The rats will be anesthetized by an intraperitoneal injection of 70 mg/kg sodium
pentobarbitone (Ceva Santé Animale, Libourne, France) with 1-mL sterile syringe and a
needle no. 26. Before euthanasia, a median laparotomy is performed, duodenum is
removed. Rats are euthanized by a single percutaneous intracardiac injection of 120 mg/kg
sodium pentobarbitone.

2.2.3 Experiment design (7- and 13-month experiments)

To determine whether T2DM permanently impaired bone structure from early
adulthood until aging, one-month old GK and WT rats were used. After 7-day
acclimatization, they were nursed until reaching the age of 7 and 13 months (n = 10 per
group). Blood was collected to determine plasma ionized calcium by using ion-selective
electrodes (model Stat Profile CCX; Nova Biomedical, Waltham, MA). Ten left femora and 10
left tibiae were collected from all rats, and bone length was measured with a vernier caliper.
Ex vivo micro-computed tomography (UCT) analysis of tibiae was performed to obtain

volumetric bone cortical and trabecular parameters.
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2.2.4 uCT analysis

As for ex vivo scanning, tibiae were enwrapped with moist gauze and were scanned
at 65 kV, 615 pA (Skyscan 1178 high-speed in vivo/ex vivo UCT; Bruker MicroCT, Kontich,
Belgium). As for in vivo scanning, after being anesthetized by 50 mg/kg sodium
pentobarbitone, the rats had their legs fixed with polystyrene foam before scanning. The
region of interest (ROI) for trabecular and cortical regions were 1.360-5.610 and 14.110-
18.360 mm distal to the proximal growth plate, respectively. The rotation angle was 0.54° at
each step and voxel size was 85 pm3 isotropically. Morphometric indices of cortical (tibial
mid-shaft) and trabecular regions (tibial spongiosa) were cortical bone mineral density (BMD;
g/cm3), trabecular BMD (g/cm3), cortical thickness (mm), cortical endosteal perimeter (mm)
and medullary area (mm?). Three-dimensional (3D) figures were reconstructed by NRecon
Software (SkyScan, version 1.6.4.8) with ring artifact correction of 10 and a beam hardening
correction of 30%. Serial 8-bit images were analyzed by CTANn software (version 1.14.4).

2.2.5 Total RNA preparation

Total RNA is extracted from duodenal tissue by using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instruction. Total RNA (1 pg) is reverse-
transcribed to cDNA with iScript cDNA synthesis kit (Bio-rad, Hercules, CA, USA) by a
conventional thermal cycler. Rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is
used as an internal control to check the consistency of the reverse transcription.

2.2.6 Quantitative real-time PCR (qQRT-PCR) of FGF-23-related genes and calcium

transport associated genes

As described by Wongdee et al. (2016), gRT-PCR and melting curve analyses are
operated by Bio-rad MiniOpticon system with SsoFast EvaGreen Supermix (Bio-rad).
Amplification reaction is performed for 45 cycles at 95 °C for 5 s, 55-60 °C
annealing/extension temperatures for 10 s. PCR products are also visualized on 2% agarose
gel stained with 1 pg/mL ethidium bromide (Sigma) under a UV transilluminator (Alpha
Innotech, San Leandro, USA).

2.2.7 Ussing chamber technique

Ussing chamber technique optimized by our group is used to investigate the
intestinal calcium transport (Charoenphandhu et al. 2009). This chamber consists of two
halves that are separated by the intestinal sheet (Fig. 4). Each half of the chamber is filled
with physiological bathing solution (see below), which sometimes contains calcium-enriched

solution. Epithelial electrical properties in direct current (DC) mode, i.e., transepithelial
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potential difference (PD), transepithelial resistance (TER) and short-circuit current (Isc), as
well as epithelial impedance in alternating current (AC) mode are also determined by Ussing

apparatus. These DC and AC properties help us to estimate intestinal calcium permeability.

Mucosa Serosa

Epithelium
Fig. 4 The Ussing chamber used in this experiment. The setup consists of two parts, i.e., the
tissue chambers filled with bathing solution, and the electrical circuit for measurement of
epithelial electrical parameters, including transepithelial potential difference (V; or PD),

short-circuit current (Isc) and transepithelial resistance (TER).

1. Intestinal tissue preparation

After laparotomy, duodenums are removed and placed in an ice-cold
physiological bathing solution, pre-gassed with 5% CO, in 95% O,. Each intestinal segment
will be cut longitudinally along the mesentery border in the bathing solution, and then
mounted in Ussing chamber. The tissue is firmly fixed to the two halves of chamber with
adhesive silicone grease. In the chamber, the tissue is bathed on both sides with 3 mL
bathing solution continuously gassed with 5% CO, in 95% O,, and is maintained at 37 °C.
Gas bubbles are fine but vigorous enough to minimize the unstirred water layer of the
intestinal mucosa and to provide good mixing. The experimental duration is ~80-90 min.

2. Bathing solution

The physiological bathing solution contains in mM: 118 NaCl, 4.7 KCl, 1.1
MeCl,, 1.25 CaCl,, 23 NaHCOj;, 2.5 Na,HPO4 12 D-glucose, and 2 mannitol. During the
experiment, solution will be maintained at 37 °C, pH 7.4, osmolality of 289-292 mmol/kg
water, and continuously gassed with humidified 5% CO, in 95% O,. In some experiments,

we expase the mucosal side of the intestinal sheet to various calcium-enriched solutions.
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3. Unidirectional flux measurement
An intestinal segment (or cultured intestinal monolayer) is incubated in the
chamber with physiological bathing solution for 10 min. One side of the chamber is later
filled with bathing solution containing “ca (added to the mucosal side for measuring
mucosa-to-serosa (MS) fluxes; added to the serosal side for measuring serosa-to-mucosa
(SM) fluxes). FGF-23 antibody is added to the Ussing chamber throughout the 10-min
equilibration and 70-min ®ca exposure periods. Five to seven samples are collected from
each setup for the calculation of the unidirectional flux of calcium from the hot side to the
cold side. Net calcium absorption is the subtraction of SM from MS. “Ca is analyzed by
liquid scintillation spectrophotometer (model Tri-Carb 3100; Packard, Meriden, CT, USA).
Total calcium concentration in the bathing solution is analyzed by atomic absorption
spectrophotometer (model SpectrAA-300; Varian Techtron, Springvale, Australia).
2.2.8 Statistical analysis
Unless otherwise specify, the results are expressed as means + standard error (SE).
Comparisons between two groups are performed by unpaired Student’s t-test. One-way
analysis of variance with Tukey’s post-test is used for multiple sets of data. The level of
significance is P < 0.05. The statistical tests are analyzed by GraphPad Prism 6.0 for Mac OS X
(GraphPad Software, San Diego, CA, USA).
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Abstract In type 2 diabetes mellitus (T2DM), the
decreased bone strength is often associated with hyper-
glycemia and bone cell insulin resistance. Since T2DM is
increasingly reported in young adults, it is not known
whether the effect of T2DM on bone would be different in
young adolescents and aging adults. Here, we found shorter
femoral and tibial lengths in 7-month, but not 13-month,
Goto-Kakizaki (GK) T2DM rats as compared to wild-type
rats. Bone nCT analysis showed long-lasting impairment of
both cortical and trabecular bones in GK rats. Although
insulin treatment effectively improved hyperglycemia, it
was not able to rescue trabecular BMD and cortical
thickness in young adult GK rats. In conclusion, insulin
treatment and alleviation of hyperglycemia did not increase
BMD of osteopenic GK rats. It is likely that early pre-
vention of insulin resistance should prevail over treatment
of full-blown T2DM-related osteopathy.
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Introduction

Diabetes mellitus (DM) is a globally common non-com-
municable disease which has deleterious effects on many
organ systems, e.g., cardiovascular and nervous systems,
kidney, and bone structure and strength [1]. Several
investigations into type 1 (TIDM) and type 2 DM (T2DM)
mostly showed similar outcomes, i.e. both types of DM
cause impaired osteoblast and osteoclast functions, abnor-
mal formation and alignment of collagen in bone matrix,
resulting in weakening of bone mechanical properties and
increased fracture risk [2—-4]. Specifically, hyperglycemia
and cellular insulin resistance as well as DM-associated
cytokines [e.g., tumor necrosis factor-oo (TNF-o) and
interleukin (IL)-1 and IL-6] often suppress bone-forming
activity of osteoblasts, but accelerate osteoclast activity to
resorb mineralized bone [5-7]. Meanwhile, an increase in
circulating glucose level induces the production of
advanced glycation end products (AGE) in the bone matrix
[3, 4, 8], thereby compromising bone elastic property and
its ability to repair microcracks.

In general, T2DM is the most common form of DM that
accounts for 90-95% of diabetic patients [1]. It results from
insulin resistance and relative rather than absolute insulin
deficiency. Most T2DM patients develop obesity or high
body fat distribution with onset later in life
(~55-57 years) [9-11]. Although there are numerous
studies of bone change under T2DM condition in various
diabetic animal models, most studies have been performed
in adolescent or young adult animals with relatively short
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periods of hyperglycemia [12—14]. Thus, evidence that
reports the final outcome of bone change in late adulthood
or aging rats is scant.

Several therapeutic strategies are used to limit diabetic
progress as well as improve quality of life, e.g., dietary
control, exercises, antidiabetic drug therapy, and insulin
replacement therapy. Because insulin can improve whole
body glycemic control by reducing endogenous glucose
production, fasting blood glucose and hemoglobin Alc
(HbAlc) [15-19], insulin injection is the treatment of
choice for T2DM patients with poor glycemic control or
poor response to antidiabetic drugs [20]. There has been a
report that insulin action in osteoblasts played a role in
the maintenance of bone structure [18]. Normally, insulin
is administered to patients with TIDM as well as to
patients in the later stages of T2DM [20-22]. Since bone
deterioration might have occurred earlier in T2DM, per-
haps just after the onset of insulin-resistant pre-diabetic
condition [23], it is not known whether early insulin
therapy in the adolescent would be effective in restoring
bone structure.

In the present study, we aimed to investigate (1) whether
in T2DM bone structure was permanently impaired from
adulthood to aging, and (2) whether insulin therapy during
the adolescent period could restore bone loss in Goto-
Kakizaki (GK) rats. GK rats were used in this study
because they are a non-obese T2DM substrain of Wistar
rats that manifest hyperglycemia with insulin resistance
and stable fasting hyperglycemia of ~ 130-150 mg/dL
[24-26]. Their non-obese characteristic also minimizes the
positive effect of body weight on bone formation, which is
often observed in obese T2DM models.

Materials and methods
Animals

The experiment was divided into two parts, i.e., experiment
1 (7- and 13-month experiments) and experiment 2 (insulin
treatment experiment). For the aging experiment (experi-
ment 1), 1-month-old female GK rats and age-matched
wild-type (WT) Wistar rats were used, while in the insulin
treatment experiment, 6-week-old female GK and WT rats
were used. All rats were purchased from the Center for
Laboratory Experimental Animals, Japan. They were
housed in stainless steel cages under a 12:12-h light—dark
cycle. Room temperature was ~22-24 °C with relative
humidity of ~50-60%. They were fed standard chow
(Perfect Companion, Thailand) and reverse osmosis water
ad libitum. All animals were cared for in accordance with
the Mahidol University policy for the care and use of
animals for scientific purposes. This study has been
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approved by the ethics committee of the National Labo-
ratory Animal Center and the Animal Care and Use
Committee of the Faculty of Science, Mahidol University.

Experimental design
Experiment 1 (7- and 13-month experiments)

To determine whether T2DM permanently impaired bone
structure from early adulthood until aging, 1-month-old
GK and WT rats were used. After a 7-day acclimatization,
they were nursed until reaching the age of 7 and 13 months
(n = 10 per group). Blood was collected to determine
plasma ionized calcium by using ion-selective electrodes
(model Stat Profile CCX; Nova Biomedical, Waltham,
MA, USA). Ten left femora and ten left tibiae were col-
lected from all rats, and bone length was measured with a
vernier caliper. Ex vivo micro-computed tomography
(LCT) analysis of the tibiae was performed to obtain vol-
umetric bone cortical and trabecular parameters. The
timeline of this experiment is shown in Fig. la.

Experiment 2 (insulin treatment experiment)

To determine whether insulin therapy could restore bone
mass in T2DM animal model, 6-week-old female rats were
divided into 3 groups, i.e., WT rats, GK rats, and insulin-
treated GK rats (GK + Ins; n = 10 per group). After a
7-day acclimatization, intraperitoneal glucose tolerance
test (IPGTT) was performed. Blood was collected at 15, 30,
60, and 120 min from all animals to determine the blood
glucose levels using Accu-Chek Active Test Strips (Roche
Diagnostics, Germany). At week 16, rats in the GK + Ins
groups were daily injected subcutaneously with 4.6
U/kg/dose insulin glargine (Gla-100, Lantus; Sanofi-
Aventis, Germany) 3 doses/day, and blood glucose was
monitored weekly. This insulin glargine administration
regimen has been validated for successfully lowering blood
glucose. Specifically, in our pilot study, blood glucose
levels were monitored at days 1, 4, and 7 of treatment.
Since it was found that this dose of insulin glargine
effectively decreased blood glucose, this dose was used for
the entire experiment.

All groups of animals were nursed until 28 weeks of
age. In vivo PCT analysis of the tibiae was performed at
various time points, i.e., 20, 24, and 28 weeks (4, 8, and
12 weeks after treatments, respectively), and week 8 was
used as a baseline (0 week; baseline control). After
euthanasia, blood was collected to determine plasma ion-
ized calcium, and the duodenum was removed to determine
transepithelial calcium flux by the Ussing chamber tech-
nique [27]. The timeline of this experiment is depicted in
Fig. 1b.
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RCT analysis

For ex vivo scanning, the tibiae were wrapped with moist
gauze and scanned at 65 kV, 615 pA (Skyscan 1178 high-
speed in vivo/ex vivo PUCT; Bruker MicroCT, Kontich,
Belgium). For in vivo scanning, after being anesthetized by
50 mg/kg sodium pentobarbitone, the rats had their legs
fixed with polystyrene foam before scanning. The region of
interest (ROI) for trabecular and cortical regions were
1.360-5.610 and 14.110-18.360 mm distal to the proximal
growth plate, respectively. The rotation angle was 0.54° at
each step and voxel size was 85 um® isotropically. Mor-
phometric indices of cortical (tibial mid-shaft) and tra-
becular regions (tibial spongiosa) were cortical bone
mineral density (BMD; g/cm3), trabecular BMD (g/cm3),
cortical thickness (mm), cortical endosteal perimeter (mm)
and medullary area (mm?). Three-dimensional (3D) fig-
ures were reconstructed by NRecon Software (SkyScan,
v.1.6.4.8) with ring artifact correction of 10 and a beam
hardening correction of 30%. Serial 8-bit images were
analyzed by CTAn software (v.1.14.4).

Measurement of transepithelial calcium flux

For ex vivo intestinal calcium transport [27], the duodenum
was removed after a median laparotomy. The duodenum was
cut longitudinally to expose the mucosa, which was later well
rinsed by isotonic bathing solution. Then, the intestinal tissue
was mounted in an Ussing chamber and bathed on both sides

of the hemichambers with an isotonic bathing solution con-
taining (in mmol/L) 118 NaCl, 4.7 KCI, 1.1 MgCl,, 1.25
CaCl,, 23 NaHCOs;, 12 p-glucose, and 2 mannitol (all pur-
chased from Sigma) for 10 min. The solution in the mucosal
hemichamber was then changed to the bathing solution con-
taining **Ca (initial amount of 0.45 pCi/mL, final specific
activity of 90 mCi/mol; catalog no. NEZ013; PerkinElmer,
Boston, MA, USA). Unidirectional calcium flux (Ji_, c, nmol/
h/cmz) from the hot side (H; mucosal side) to the cold side (C;
serosal side) was calculated by Egs. 1 and 2:

Ji—c = Ru—c/(Su x A),
St = Cu/Cro,

(1)
(2)

where Ry;_c is the rate of **Ca appearance in the cold side
(cpm/h); Sy is the specific activity of the hot side (cpm/
nmol); A is the surface area of the tissue (cmz); Cy is the
mean radioactivity of the hot side (cpm); and Cr, is the
total calcium content in the hot side (nmol). **Ca
radioactivity was analyzed by a iquid scintillation spec-
trophotometer (model Tri-Carb 3100; Packard, Meriden,
CT, USA). In the absence of a transepithelial calcium
gradient (the same calcium concentration of 1.25 mmol/L
in both hemichambers), the calcium flux represented active
calcium transport in the mucosal-to-serosal direction.

Statistical analysis

Results are expressed as mean £+ SE. Two sets of inde-
pendent data were compared by unpaired Student’s ¢ test.
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One-way analysis of variance (ANOVA) with Newman—
Keuls multiple comparisons test was used for multiple sets
of independent data. The level of significance for statistical
tests was P < 0.05. All data were analyzed by GraphPad
Prism 5 (GraphPad Software, San Diego, CA, USA).

Results

In the adolescent period, plasma free ionized calcium of
7-month-old GK rats was markedly lower when compared
to WT and the reduction lasted until 13 months. However,
unlike WT rats, the plasma ionized calcium levels in GK
rats did not decrease from 7 months to 13 months (Fig. 2).
The body weight of WT rats increased with increasing age,
whereas the lower body weight of GK rats did not change
with age (Fig. 3a). Low body weight of GK rats could be
partly due to shorter femoral and tibial lengths in 7-month-
old GK rats (Fig. 3b, c). However, there was no difference
in bone length between GK and WT at 13 months. Shorter
long bones of 7-month-old GK rats suggested a possible
deleterious effect of T2DM on body growth, particularly
bone elongation in adulthood (7-month group).

Bone microarchitectural analyses by pCT revealed
impairment of bone structure in GK rats, i.e., lower cortical
BMD, trabecular BMD and cortical thickness when com-
pared to WT (Fig. 4a—c). Moreover, the trabecular BMD in
GK rats was markedly lower, by ~33 and ~49% in 7- and
13-month-old GK rats, respectively, possibly resulting
from expansion of the medullary area (enlarged marrow
cavities) and endosteal perimeter (Fig. 4d—f). Medullary
areas were enlarged by ~40 and ~76% in 7- and
13-month-old GK rats, respectively (Fig. 4e, f).

Furthermore, we investigated whether early insulin
treatment in adolescence could rescue bone microstructure
in GK rats. Prior to pCT analyses, we determined glucose
tolerance using IPGTT in 7-week-old GK rats and found
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Fig. 2 Plasma ionized calcium of female WT and GK rats. Numbers
in parentheses are numbers of animals. ***P < (0.001 vs. age-
matched WT rats
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Fig. 3 Body weight (a), femoral (b) and tibial lengths (¢) of 7- and
13-month-old female WT and GK rats. Numbers in parentheses are
numbers of animals. ***P < 0.001 vs. age-matched WT rats

impaired glucose tolerance after 2 g/kg glucose loading
(Fig. 5a, b), indicating the presence of insulin resistance in
GK rats. After 12 weeks of daily insulin glargine injection,
plasma glucose levels were restored to the normal range
(Fig. 5¢). Interestingly, plasma free ionized calcium
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tive pCT images of the tibial cortical envelopes (midshaft). Numbers

partially increased in insulin-treated GK rats with no
changes in the transepithelial calcium transport across the
intestine (Fig. 5d, e). However, longitudinal in vivo pCT
analysis demonstrated that 12 weeks of daily insulin
treatment in GK rats did not rescue trabecular BMD, cor-
tical thickness, or medullary area (Fig. 6). In 12-week
GK + Ins rats, trabecular BMD was further decreased
when compared with GK rats, suggesting that T2DM per-
manently destroyed the cortical and trabecular bone, which
could not be restored by early insulin treatment.

Discussion

It is evident that hyperglycemia and insulin resistance in
T1DM and T2DM are able to impair bone structure and
function by causing abnormal bone cell activities (cellular
failure) and aberrant extracellular matrix structure and
composition (matrix failure) (see [2] for review). In the
present study, we demonstrated the effects of T2DM on
longitudinal bone growth and BMD in adolescent (7-
month-old) and late adult (13-month-old) GK rats. We
found that GK rats had much lower body weight in both
periods. Interestingly, although body weight of GK rats
was much lower than WT rats, the final outcome of bone
length in aging GK rats was not different from WT rats,
indicating that T2DM might interfere with bone elongation

in parentheses are numbers of animals. Arrows indicate the enlarged
marrow cavities in GK rats. *P < 0.05, ***P < 0.001 vs. age-
matched WT rats

only in the growing period. In other words, the shorter bone
length in GK rats was observed in the young adult period,
but later bone length reached the same length as in WT rats
in the late adult period. Indeed, the reason for this evidence
was unclear. There have been reports of both normal and
impaired growth in DM individuals [28-30], which might
link to DM-associated growth retardation [2, 30].
Normally, bone elongation depends on nutrient ade-
quacy, e.g., calcium and zinc, as well as local and systemic
factors, e.g., growth hormone (GH), insulin-like growth
factor-1 (IGF-1), and insulin [31-34]. Specifically, GH
cooperates with insulin to enhance growth plate chondro-
cyte proliferation and maturation through overexpression
of endochondral bone formation-related genes, such as type
2 collagen and aggrecan [34, 35]. Therefore, relative
insulin resistance in T2DM, which is caused by abnormal
insulin signaling [19], could impair growth plate chon-
drocyte development or bone growth. Bone elongation is
generally controlled by proliferation and differentiation of
chondrocytes in the growth plate. The growth plate is
divided into three zones, i.e., the resting zone with low
mitotic activity chondroblasts that later migrate into the
proliferative zone, where cells have high proliferative
capacity. Proliferative chondrocytes become enlarged in
the hypertrophic zone before undergoing apoptosis, and are
replaced by osteoblasts that arrive with vascularization
[31, 36, 37]. Therefore, it is possible that a decrease in bone
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growth in GK rats could result from delayed growth plate
chondrocyte differentiation and/or premature chondrocyte
apoptosis [14, 38].

Consistent with reports in T2DM, Muiioz et al. [30],
who studied the heights of TIDM patients in different
pubertal stages, reported that adult heights were eventually
within normal range, but growth velocity was below
average. The present finding of shorter bone length in
7-month-old GK rats was almost consistent with the
aforementioned finding. Hence, catch-up growth was
observed in 13-month-old GK rats in the present

@ Springer

and 12 weeks of insulin treatment. d Plasma ionized calcium.
e Transepithelial calcium flux across the duodenum of 28-week
WT, GK, and GK + Ins rats. Numbers in parentheses are numbers of
animals. *P < 0.05, **P < 0.01, ***P < 0.001 vs. age-matched WT
rats; P < 0.01, ¥ P < 0.001 vs. GK rats

longitudinal study. This may be caused by both groups
having completely passed the growth spurt period in which
the growth hormone level is very high [39]. In addition, an
optimal estrogen level during sexual maturation enhances
skeletal growth [40—42]. Therefore, the accomplished
growth spurt period might be a factor for catch-up bone
growth of GK rats.

Furthermore, pCT analyses revealed that cortical and
trabecular BMD and cortical thickness of GK rats were
significantly lower than in WT rats from 7 until 13 months.
The lower BMD in both cortical and trabecular portions led
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to the expansion of the medullary area which persisted until
13 months, suggesting long-lasting negative effects of
T2DM on bone. Therefore, we confirmed the T2DM-in-
duced permanent bone loss by performing a longitudinal
insulin rescue study by injections with insulin glargine 3
doses daily for 12 weeks (from 16 to 28 weeks of age).
Strikingly, although insulin treatment could restore blood
glucose towards the normal baseline, it was unable to
recover bone density (both trabecular and cortical portions)
in GK rats (Fig. 6), suggesting that insulin glargine could
improve hyperglycemia but not insulin resistance in bone

D wr

4 weeks 8 weeks 12 weeks

Treatment duration

GK GK + Ins

cells. The reason why insulin treatment failed to improve
bone architecture may be due to several factors, e.g., dif-
ferent degrees of severity of insulin resistance in bone cells
or bone-derived mesenchymal stem cells and other cell
types (e.g., muscle cells). Recently, GK rats have been
reported to exhibit insulin resistance with a decrease in
insulin receptor expression in bone cells compared with
WT rats [43]. Furthermore, prolonged accumulation of
advanced glycation end products (AGEs) in the bone
extracellular matrix and insulin resistance-related pro-
longed reactive oxygen species (ROS) production would
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continuously stimulate osteoclast survival and function,
leading to the enhanced bone resorption [44, 45].

Non-obese and insulin resistance are important char-
acteristics of GK rats [25]. Wei et al. [19] have provided
evidence that insulin resistance caused perturbation of
osteoblast function that notably affected whole-body
glucose homeostasis. They demonstrated in mice lacking
one allele of Insr in osteoblasts (Collal-Insr™~ mice)
that bone-specific insulin resistance led to a decrease in
circulating levels of bone-derived hormone osteocalcin,
which is needed for optimal insulin sensitivity in muscle
and white adipose tissue, thereby impairing glucose
homeostasis [19, 46]. Importantly, osteocalcin as a non-
collagenous extracellular matrix protein is largely
responsible for hydroxyapatite binding in bone formation
[47]. Thus, perturbation of insulin signaling could indi-
rectly impair bone strength through a reduction in
osteocalcin production [19, 48]. Furthermore, Wei et al.
[19] noted that insulin resistance in high-fat diet-fed mice
was developed from lipotoxicity-induced degradation of
insulin receptors in osteoblasts. Therefore, a reduction in
insulin receptor expression in osteoblasts probably causes
ineffectiveness of insulin replacement therapy to recover
BMD of GK rats.

Besides osteoblasts, osteoclasts are another target of
insulin action. Thomas et al. [49] showed the expression of
insulin receptor on mouse osteoclast-like cells. Consistent
with our previous study in GK rats [14], bone histomor-
phometric analysis confirmed that DM reduced osteoblast
function (e.g., osteoblast surface, mineralizing surface, and
bone formation rate), while increasing osteoclast-mediated
bone resorption (e.g., osteoclast surface and eroded sur-
face). In addition, GK rats have been shown to increase
mRNA expression of inflammatory cytokines, especially
TNF-a, IL-1, and IL-6, all of which are known to be
osteoclastogenic factors and might contribute to the
enhanced bone resorption [50]. DM-induced bone resorp-
tion also caused the elevation of extracellular calcium in
the bone microenvironment, which, in turn, enhanced dif-
ferentiation of bone marrow stromal cells into adipocytes,
and decreased osteoblast number and perhaps osteoblast-
mediated bone formation [51].

Taken together, the present study showed the long-
lasting negative effects of T2DM on cortical and trabecular
bones during the stage of adulthood to the aging period.
Early treatment with insulin in adolescent GK rats could
not restore bone microstructure or BMD to normal,
although it successfully abolished hyperglycemia. There-
fore, early prevention of T2DM is exclusively the best way
to control the T2DM-associated bone health deterioration.
Limitations of the present study include the absence of data
on the insulin tolerance test and bone cell insulin resis-
tance. Moreover, in vitro and in vivo bone cell responses
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under diabetic condition and insulin treatment should be
further investigated for a better understanding of the
pathogenesis of diabetic osteopathy.
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