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Abstract

Biomass derived fuel has been widely used in Thailand. The solid oxide fuel cell can fed variety of fuels.
Moreover, the experimental cost of the solid oxide fuel cell is very expensive. Therefore, the mathematical
model of solid oxide fuel with biomass derived fuel is crucial. The governing equations for solid oxide fuel are
the fully coupled of the current balance equations, the mass transport equations, the Navier-Stoke equations,
and the Brinkman equations. Taken into account the biomass derived fuel, the chemical reactions from the
gasifying process reveal that the hydrogen mole fraction is controlled. The effect of the hydrogen mole
fraction is investigate. The results indicate that increase the mass fraction, the average current density is not
increase. The electrolyte current density with high initial hydrogen mass fraction has the good distribution at
the center of the solid oxide fuel cell than the lower one. However, the investigation in the precise values
of the hydrogen mole fraction have to do for the further study. The results are not only applied to the

transportation, industry but also increasing the knowledge of the research team.
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1.1 anudAuaziiunvastdyinionisiae

Uagtuvsnanihdfuguiiuidsanategienindinnnisidndsnuduunn ibilimsfnsndsnunmadonuinung

s

Tawn wasudwades [27, 3, 18, 21], WasUAINNZLa [25], Wasudiuaa [6, 14, 24], nasnulalasau [1], nasau
AL, WaNULAINYRY 1av Bnvialgmuaiwlueinia anazlaniau [4, 9, 11, 17, 23, 32] MANINNITVUAININIIUA
19 Msudnlnin a4 Tunsuddgmdl Tn1sAnsInasunIadenunning Wy wasu biodiesel [34, 151, wia

Twsoad (7, 22] \Judu Fudunmsihnduaindimauudssldundsnunldiuesessuiuaziniodngsng o uid

fiansandedunedausends Bnianithazdumnauifdmsunisanuaivuazlindanuudans fe nsliwead e
waaldlelasmududomas
waawamaandealdiuunlutagiuiimeiu e wuu fie wadWendsuy Polymer Electrolyte Membrane Fuel

Cells (PEMFCs) ua 1wadiainasuuu Solid Oxide Fuel Cells (SOFCs) wadliaunds PEMFCs agviauiigamgil 50-

la Y a A

80 °C duwdWaImaILuy PEMFCs agvhnuiigamgiaeudnegsde 800-1,000 °C udiided Ao awnsaliweinds
lavanra1euInndT Wy Wewnasdiuna (Biomass Derived Fuel) filnu (Methane) ivnuea (Methanol) len1ues

(Ethanol) Anesssuan® (Natural gas) IR AN (Biomass Derived Synthesis gas) [30, 16, 19, 20, 33] A2

o

winil Jailnuddednuanniiaulifnwiiediuwadidennds SOFCs [19, 20, 26, 8, 31, 5, 10, 29, 28] uAnitfunu

Tuns@inwigadivemdsroudas msliuuuiaesdsndamansisdunadenfivzanunsaanalidelunisviings

naaedld ansaliveyaliedn suwdmauimginssuneluwadwomala

a Ve (9 !

KWUUARIRREInFansvaad Wamateanlonvods JaAnwkasWaununueag1esatdes [2, 12, 13, 19,

Y

20, 26, 8, 311 Ni waz#iuau [19, 20] TAWRUILUUINABINANRNFAIEAS ANNSUANw ) was o wmwasvin Ammonia

fed uay Methane fed SOFCs 91nN15ATIEANITIAMDS A 9 WU Wwaa e ndevia Methane fed SOFCs

a

g91ins¥UIUNTT Methane steam reforming uaz Water gas shift reaction dtfgdfgyamumngias lngagnan

9 Y

lalaswulaluUsnamnnuas idnaveslalasiausieungs Tseronis waginau [31] Anwin1siadeuilvesus
(Mass transport) Tugeaitiolndseaimadiioinds SOFCs 2nn1sWRILIL UL A eadnmansiioAnulunsdlves
Multi-dimensional model ﬁqmwﬂuﬁmﬁ %mgjmﬂéfﬁaulﬁmaq Stefan-Maxwell model Wag dusty-gas model

dwSU porous medium INMINAFBULUVTIRRINUTTINGRdoAATRsTuTaYaNAAINNIMARRY INN1SANYINY
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1.3 UdUlATBIIATINISTIVY

[V 7]
U A Va v =

Tunsfinwasell {Idefnvwuudtaesdendinmansainanuide tnelideayaannuidenlasunsiiuilugiuteya

Y

#1149 9 Inedeyanliliun Yuinveadweinas (Domain) @un1sAIUAN (Governing Equations) wagw13iimes

1.4 350 un1578

[
[ N v [ [

Tumsaliunsidegiifedafutuneulunisaiivau el

¥ o

1 AnwianudivesiunsluSoswegadiomnfuuusig q wasiuudnaswsing  Mifeites Mnuiddouasnuide

dielilduuusaswewaditomaseenlusvauds
2 Fnweudulldvesinevvessyuvaumsiiduuuusaswewad femaoonlasvsuds
3 FUATEUATEIUSNATIANY (Domain)
4 wmmeuisdtavlagldlusunsy Comsol Multiphysics
5 Aneiuazagunadineuils
1.5  Uszlewiiandinaslésu

Tunsimwkuudtaesindamansvousadifeindaoanludveuds fideaninaglasuuselovd fed

1 lpuvudraeadepdamansnamnsaldimsils lnewuudtassiilavszandmsldwamndstuailulunis

ANWILUUINEBY

2 lawuudnasaniinsiiwadwamaseonlsnuaiuds Faduonamduinssednndsy UuiwausuAuRe

WasTradadundsnunidlulsemelng

3 landndadinnfenuineinusuuiiaemeutadidamaseenludveds
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2 A5AHUN159Y

¥ '
aa a

lun1sauiiunsideveddasinsideil Sudulagmsfnwiannuinugiuveswandomarilaniig 4 Ugasenainne

= o

Tu wdnszuIumMstunsinurelwadiomas AntuITessfinwiuuudasadendinanansiingiveuadiaw

Tneauun1syinauYeIwa sl oL A

2.1 lassadwiugiuveswasaidomduiaoanlusvaswds

1%
1Y 1 a

Taseadafiugiureswad Womadsuueanlsdvewds 1 wad Ussnousediudifey 3 @ fie Tauelun (Anode) 99
uAlna (Cathode) wagdidninslad (Electrolyte) dnusenauiu lnsuravdiuiuazidumesaouiua (Interconnect)
Jusn@eusewaddimeiu neduiifanungu loun welundianivse (Anode Electrode) wazualnadidningm

(Cathode Electrode) LLavaﬁéﬁ'ﬂgUﬁ 1

Anode
Fuel ¥ Electrolyte
Cathode
Cell 4= Air
Repeat

Unit

Interconnect

JUT 1 amanufifvensadideindsoanlydvends 1 wad

2.2 Ufisenaiiluwedianas

Ufsenaiiluwadwamdansweluniazsualnaaunsananslalaeuisesdeludaudiu
Hz + 0% — HO + 2e~
1 _ g
EOZ +2e7 =5 O,

AUNTTIUAD

%Oz + H, — H,0.
Eldnesvaunauenlmiudomaes aunseiiiwelus
2CO + 20%~ — 2CO, + bde~;
aumspdiiualve

O, + de™ — 207%™,

12



LAZENN1ITIU
2C0O + Oz — 2C0O;.

Weldlalasasueu (Hydrocarbons: CoHm) WUu@ewmdsag lnaunisind veswas Womndsiiuelun ualng way

AUNNSTIVBTAd AuEFURE
CoHm + (2n 4+ 0.5m)0*~  — nCOz + (0.5M)H0 + (4n+m)e~, p=2n+0.5m
(N4 0.25m)0, + (4n +m)e™ — (2n + 0.5m)0?~,
CoHem + (N 4+ 0.25m)0; — NCO; + (0.5m)H,0.

2.3 @un13AUAN (Governing Equations)

TuwadWomdsvinoonlenveadiuenunioanujiseneiiluwad @omdd Sullnmsindeuiivesnszualnin sau
feaudRrnunsuvesusasduluwad @omds Jsdiaudnduniasdeahaunisiinuaudnvarusaswuvan sauiu

TngaunsMnendes deaselll

V-J=Q, (1)

1Agil J unu current density vector in the electrolyte, Q WHuldvis source uay sink

Cho 0.5F Choo —1.5F
a,ct = a - s 2
Q oot Q07 (ChQ,ref &P ( RT n) Ch2o,ref &P ( RT 77)) ( )

1nen Qo.a f® anode exchange current density (A/m?2), cpo A molar concentration of hydrogen, cpao 0}

molar concentration of water, ¢; A8 total concentration of species (mol /m3), cha ref WOY Chaoref f reference
concentrations (mol/m?), F fi8 Faraday's constant (C'/mol), R fin 1A% (J/(mol - K)), T 9 9eunqil
(K) waz n A overvoltage (V).

N = Gelectronic — Pionic — Deq (3)

e A, P® equilibrium potential difference (V) [13].

mass transport equation d1m5Ulsiay species i =1,...,Q Ao

1neil p AB mixture density Wag u Av mass average velocity of the mixture

Navier-Stokes equations ka¢ Brinkman equations ldlunsaununisivaniianungudiniieides

V-(pv) =0 (5)
p(V-V)VzV-[—pcl+u(Vv+(Vv)T)—§MV~V)I]+F (6)

13



V- (pV) = Qbr (7)

2
g(v-V)% = V-[—p|+/;L(VV+(VV)T)—3/:(V~V)|] ®8)
= (“+ﬁplv+ QST)V-I-F
KRpr €

laefl 1 A9 dynamic viscosity, v A velocity vector, p Aig AUVUILUY, p AD AVIUAY, ¢ AD AUNTY, & AB
permeability of the porous medium Wag Q. A8 source or sink, Sx|v|v A® viscous force proportional to the
square of the fluid velocity lne#l B Ao Forchheimer drag option.

Usnaild@nwuanslasisgy 2.

cathode flow channel (25)

cathode electrode (£24)
electrolyte (Q3)
anode electrode (£22)

anode flow channel (£2;)

U7 2 Tassadevesiead o mdsoonludvoudavuin 1 wad Uszneuse anode flow channel (©,), anode
electrode (Q,), electrolyte (Q23), cathode electrode (Qy), ko cathode flow channel (25).

ANNITAN Q’%i’fﬂwuﬂﬂ%umauwma%umﬂumsv’v“sumgiJLLUUﬂ’lsﬁ']Wé’muLLUUfﬁm q Ul luwad @e
waseenlsdvends WeRasanaunsedveaidomdsuuusa q w%famffqﬂszmumiwﬁmlaiml,wu%qwémﬂLﬁ'??a
wastnm awilildlelnsnuusaviiftefier lluweddewds whvinalelasauuiiladsasyinliead doimdad
UsyAvBamifian fadu §ideasuiuaes mass fraction wielilduuusaesdmsumadFomamendsiliddomas

Frnadudenwasniuseansnng

2.4 waulvAvau

¢ & a I3 < o o =~ ~ v v I3
wadwodseanlynvesudaiinisivaluanyue counterflow Insdlalasauinniuelunlaelainiediuvoiead
& a o w L. . | a & ¢ |
\WeLNAY duSuEUNTS ionic charge balance equations lugssnisivaualve dianinslad uagdesnisiraielun
mmualiveulasseulluauiu fAwauns (9)

—n-J=0. 9)

&3 transport of species lunolun 1A mass fraction FuAwdu (wy,) 0.04, and 0.2 TngldAfiaudrevoses
Aslvanelus Tudiuveiniuve9teInisaweluatvusliiduteinislvasen seuuanveaIreInisawalun

wazualng uuarvadlmdu No flux boundary condition fsaanns (10)

—n - (j; + puw;) = 0. (10)
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2.5

W1570L005

A15197 1: NS ILARIAINISITHBSN T IUNISUIAINDUVBILUUTIABY

Aeydnual Fazden Al
Chooref Reference concentration, H,O at anode 1.6223 mol/m?3
Cporef Reference concentration, H, at anode 9.7336 mol/m?
Copref Reference concentration, O, at cathode 1.2559 mol/m?3

Ctot Total molar concentration 11.356 mol/m?3
Dhoh2o Diffusivity, H, — H,O 8.5871 x 10=%* m?/s

Dhonooeff | Effective diffusivity, H, — H,O 2.1724 x 10=* m?/s
Dr2h2o Diffusivity, N, — H,O 2.4477 x 10=% m?/s

Dronooeff | Effective diffusivity, Ny — H,O 6.1922 x 10° m?/s
Do2h2o Diffusivity, O, — H,O 2.451 x 1074 m?/s

Doonooeff | Effective diffusivity, O, — H,O 6.2005 x 107> m?/s
Dozn2 Diffusivity, O, — Ny 1.9235 x 10=%* m?/s
Doonoeff | Effective diffusivity, O, — N, 4.8662 x 107° m?/s

dpa Pressure drop, anode 2 Pa
dpc Pressure drop, cathode 6 Pa
€por Porosity 0.4
Eeqa Equilibrium voltage, anode oV
Eeqc Equilibrium voltage, cathode 1V
Hepannet | Gas flow channel height 5x107%m
Hetectroyte | Electrolyte thickness 1x107%m
Hede Gas diffusion electrode thickness 1x107%m
i0, Exchange current density, anode 0.1 A/m?
i0c Exchange current density, cathode 0.01 A/m?
Kd Reference diffusivity 3.16 x 1078 m?/s
KU Electrolyte conductivity 5S/m
kleff, Electrolyte effective conductivity, anode 1S/m
kleff. Electrolyte effective conductivity, cathode 1S/m
Ks Current collector conductivity 5000 S/m
kseff, Solid effective conductivity, anode 1000 S/m
kseff. Solid effective conductivity, cathode 1000 S/m
L Flow channel length 0.01m
Mo Molar mass, H; 0.002 kg/mol
fnenidaly

15




A15199 1 (A1)

Aeyanual R ELHGEN) Al
Moo Molar mass, H,O 0.018 kg/mol
Mn2 Molar mass, N, 0.028 kg/mol
Moo Molar mass, O, 0.032 kg/mol

u Viscosity, air 3x 10 Pa-s
Patm Atmospheric pressure 1.0133 x 10° Pa
perm, | Anode permeability 1 x 10710 m?
perm: | Cathode permeability 1 x 10710 m?
Sa; Specific surface area, anode 1% 10% 1/m
Sac Specific surface area, cathode 1 x10% 1/m
T Temperature 1073.2 K
Veel Cell voltage 095V
Vpol Initial cell polarization 0.05V
Vho Kinetic volume, H, 6 x 107
Vhoo Kinetic volume, H,0 1.27 x 10~°
Vno Kinetic volume, N, 1.79 x 10>
Vo2 Kinetic volume, O, 1.66 x 10>
Wehannel | Gas flow channel width 5x107%m
Whooref Inlet weight fraction, H,O at cathode 0.37
Whoref Inlet weight fraction, H, at anode 0.4
Wooref Inlet weight fraction, O, at cathode 0.15
Wiip Rib width 5x107%m
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3 NAN159Y

1A59a51991978 (Mesh) ¥a9uuuInasdnsultlunismanneudesiigee LLam”LéfﬁagUﬁ 3 PINUUANIAIHDULIF LAY

NauN1IAIVANNaNnsuazieuluAvedlaglilusunsu Comsol Multiphysics 5.2

gﬂﬁ 3: Computational mesh for a unit cell solid oxide fuel cell consists of 9,744 elements.

Tunsinwnawes mole fraction 7iilsoUszansnmusswadidowmas Aves mole fraction vaslalnsiuitléily
AEUF Ao 0.04 waz 0.2 N15NTZA18VBY mole fraction vaslalasiau  anode electrode wa anode flow channel
fildeives mole fraction voslelnsiauduAEusn 0.04 uag 0.2 mMuadu uansisgufl ¢ Angeanues mole fraction
vaslalasiuiniuiitesnsinadiuazresq anas Inerves mole fraction vaslelnsauduriBudu 0.04 uaz 0.2

fUuuuaagadaiy

V_pol(9)=0.8 Slice: Mole fraction (1) V_pol(9)=0.8 Slice: Mole fraction (1)

0.25

0.6

0.2 0.5

0.4

0.15 \\
N \ 0.3
N\ \ A N N
0.1 N 0.2
L -

}\} W\

0.05

E‘Uﬁ 4: N15n5¥318U83 mole fraction va4lalnsiau 91 anode electrode wag anode flow channel AlgAwBT mole
fraction vpalalasauidua1Sudu 0.04 uay 0.2 MUEIAU (wy,, = 0.04,0.2)
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gﬂﬁ 5 1Junsmiuans electrolyte current density in the center veaaddaAsoenlasvoudsiifidwes mole
fraction veslelasiauidud1Budu 0.04 way 0.2 mudy A1Yes current density HAgsiivanesuiavosvad
Femaseanludvoaudsiifidnves mole fraction veslelnsaududiEusi 0.04 luvnezdiages mole fraction veq
lelasiuiduAiBudu 0.2 fid current density gafiuinunansadidemas polarization curves YeeARLIRINAS
oonlwsvesudadiliAnves mole fraction weslelnsiouwfudiBusu 0.04 uay 0.2 puddy uanaiszui 6. Tngi
A mole fraction vedlalasuiiléifiuaEudu Ao 0.04 fien average current density mﬂﬁqmﬂismm 2,700
A/m? Funnniwadidemaseenlusuoudeilidues mole fraction vedlelanauduriEusudu 0.2 aguszana

500 A/m?

V_pol(9)=0.8 Surface: Electrolyte current density vector, z component (Almz) V_pol(9)=0.8 Surface: Electrolyte current density vector, z component (Nm2)
x10° x10°

3.5 3

3 C ’
2.5
2
2
1.5
1.5

5U7l 5: Electrolyte current density 7ildi@1ae mole fraction waslalasiauduaBudu 0.04 way 0.2 muddu
(wp, = 0.04,0.2)

=

Polarization curve Polarization curve
0.95F 0.95
0.9r 0.9+
0.85r 0.85r
0.8r 0.8
0.75r 0.75r
0.7r 0.7
_ 0.65r _ 0.65f
2 os6f B X
>3 0.55r >3 0.55¢
0.5r 0.5r
0.45¢ 0.45
0.4r 0.4
0.35r 0.35
0.3r 0.3
0.25r 0.25
0.2 0.2
500 1000 1500 2000 2500 500 1000 1500 2000
Average current density (A/m?) Average current density (A/m?)

U1 6: Polarization curve lg@1vas mole fraction veslglasuiduarGudu 0.04 uaz 0.2 MUAAU (wWh, =
0.04,0.2)
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W bio-oil 38 liquid ethanol agfasinszuIunslunsilaiglelasauuigns dainagld stream-iron process

Fadulumuaunisaiineluil

CaHmOp + (2n — p)H20 + NCa0 — nCaCOs + (g —on— p) H,. (11)

'3
=

dundanudimanuudu o Asuduazdesiinszuiunsluilildfelelnsouuians Tuguuuuiiuanseiy &
tfu Tunuusaesdeadamand auesdn mslidndmveslelasauuiandinle Taasvhliwad dowdseenlus
veaudeiiuszansnni annsAnulegliuudiassuuu fully couple Up3aNANT mass transport, Maxwell-Stefan,
Navier-Stoke wag Brinkman uaglaglfiteulvameufivzay suvannsild dhlumemeulnglusunsy Comsol
Multiphysics 5.2 wuan dloiurves hydrogen mass fraction A1U94 average current density fuanslunsm

polarization LWy usl electrolyte curent density 35U LUuUN1INTEALMIAINIANNANTVBULATROINAS BE4ls

a

An meideluaseifunisAnwilosdiu wWeldnsunaiudueusudesiinsgviadivainvans sufeladedu q 9

netaaielrldwadwomnasniuszansa s Wisnazidunuiniadesdurietnidelunisdnduls
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WeAerdestuuvuirassdndinmaniunniin Sednadulamiidesmmneendusiely
Tunsflazihrams3eduly ludesdusuuassansaldlunisiieszinavestadsig o W Comsol
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A Mathematical Model of Solid Oxide Fuel Cell fed Biomass Derived Fuel

Sineenart Srimongkol,
Department of Mathematics, Faculty of Science, Burapha University, e-mail: sineenart@buu.ac.th

Abstract
Biomass derived fuel has been widely used in Thailand. The solid oxide fuel cell can fed variety of
fuels. Moreover, the experimental cost of the solid oxide fuel cell is very expensive. Therefore, the
mathematical model of solid oxide fuel with biomass derived fuel is crucial. The governing equa-
tions for solid oxide fuel are the fully coupled of the current balance equations, the mass transport
equations, and the Brinkman equations. Taken into account the biomass derived fuel, the chemical
reactions from the gasifying process reveal that the hydrogen mole fraction is controlled. The effect
of the hydrogen mole fraction is investigate. The results indicate that increase the mass fraction,
the average current density is not increase. The electrolyte current density with high initial hydro-
gen mass fraction has the good distribution at the center of the solid oxide fuel cell than the lower one.

keywords : Solid oxide fuel cell, Mathematical model, Biofuel, Biomass derived fuel
Classification Code: 93A30

1. Introduction

Due to the energy problem, the renewable energy such as wind power, solar energy, nuclear energy,
biofuel including hydrogen energy is a possible solution [4, 9]. Fuel cell is a device using hydrogen for
the electrical power. It was firstly developed in 1983 by Friderich Schnbein. Nowadays, the fuel cells
research works are focused on the development of various fuel cell for powers and transportation. Fuel
cell can be classified as alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC), molten carbonate
fuel cell (MCFC), polymer electrolyte membrane fuel cell (PEMFC), direct methanol fuel cell (DMFC),
and solid oxide fuel cell (SOFC) [5, 7, 13]. Solid oxide fuel cell has the high efficiency (50-60%), high
operating temperature (650-1,000 °C') and flexibility of feeding fuels not only pure hydrogen, but also
many reformate composition consisting of multi-component species maybe used as fuel, such as water
(H20), carbonmonoxide (CO), carbondioxide (CO2), including biofuel [2, 6, 10]. In Thailand, biofuel
is developed due to the rich of resources [3, 8, 11, 14, 15].

The liquid biofuel or bio ethanol or bio-oil can produce purify hydrogen by steam-iron process
[1, 12]. It is gasifying as following chemical reaction,

CoHmOp + (20 — p)H0 + nCaO — nCaCO; + (% _on— p) H,.

The syngas from the biomass gasifier enters the prereformer and CO is converted to Hs and
COs. In the pre-reformer CH4 and CO are converted into the hydrogen using the steam agent. The
chemical reactions are as follow,

CH4 + H,O0 — CO + 3H,,
CO + Hy0 — CO5 + Ha,
CH4 + 2H20 — CO4 + 4Hs.
The chemical reactions in the solid oxide fuel cell system consist of the reaction in anode and
cathode, respectively,
Hy + 0?7 — HyO + 2e7,
%Og +2 — 0%,
The overall reaction is
%Og + Hy — H5O.
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FIGURE 1. Solid oxide fuel cell and the flow of the chemical reaction to produce the
electrical current.
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FI1GURE 2. Three dimensional of a single cell planar solid oxide fuel cell.

The flow of the chemical reaction for producing the electrical current is shown in figure 1.

From the purified hydrogen process from liquid biofuel and syngas from biomass gasifier, the
hydrogen is produced. The solid oxide fuel cell will obtain the rich hydrogen from those processes.
However, how much hydrogen should increase the performance of the solid oxide fuel cell? Therefore,
the effect of the hydrogen mass fraction is investigated.

2. Mathematical Model

Solid oxide fuel cells can produce more electrical power by increase the cells into the stack. Therefore,
the performance of the solid oxide fuel cell is investigated using a single cell as shown in the figure 2
The computational domain is created as shown in the figure 3.

2.1. Governing Equations

The governing equations consist of Maxwell-Stefan equations as shown in equation (1)

0 .
5 (pei) +V - (peiu) = =V - j; + Ry (1)
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FIGURE 3. Configuration of a unit cell solid oxide fuel cell; anode flow channel (),
anode electrode (§22), electrolyte (£23), cathode electrode (€24), and cathode flow chan-
nel (95)

where, p (kg/m?) is the mixture density, u (m/s) is the mass average velocity of the mixture, c; is the
mass fraction, j; (kg/(m?s)) is the mass flux relative to the mass average velocity, and R; (kg/(m3s))
is the rate expression describing its production or consumption.

The current balance in the electrolyte is governed by

VJ:Q, in QQ, Qg, Q4 (2)

where J denotes the current density vector in the electrolyte, Q can be any source or sink. Navier-
Stokes equations for describing the flow in open regions, and the Brinkman equations for the flow in
porous regions.

LYo =0, 3)

O+ p (e Ve = V- | —pel 1 (Ve (Vuo)T) = 20V ue) 1] + 7, )
) 19 (o) = Qu )

=9 [t 2 (Tuc ot (7u0”) = 35 (7 w01 ™)
(+BF\uc\+ Qz’">uc+F (8)

where u (kg/(m-s)) is the dynamic viscosity, uc (m/s) is the velocity vector, p (kg/m?) is the density,
pc (Pa) is the pressure, €, is the porosity, , (m?) is the permeability of the porous medium, and Qp,

(kg/(m? - s)) is a mass source or sink. B |uc|u. is viscous force proportional to the square of the fluid
velocity Where B is the Forchheimer drag option (kg/m?).

2.2. Boundary Conditions

The fuel feed in the cathode and anode is counterflow, with hydrogen-rich anode gas entering from
the left. For the ionic charge balance equations in cathode electrode, electrolyte, and anode electrode,
the insulating boundary condition is applied on all external boundaries as shown below.

—n-J=0. 9)

For the transport of species in anode, initial mass fraction (wp,) 0.04, and 0.2 are used at the left
of the anode flow channel. The outflow is at the right of the anode flow channel. No flux boundary



condition is applied to all external boundaries of the anode electrode and the anode flow channel as
given below.
—n- (j; + puw;) = 0. (10)

3. Numerical Simulation

The computational mesh is consisted of 9,744 hexahedral elements as shown in figure 4. The numerical
solutions of the fully couple equations (1) - (8) and all boundary conditions are obtained by Comsol
Multiphysics 5.2.

FiGURE 4. Computational mesh for a unit cell solid oxide fuel cell consists of 9,744 elements.

To investigate the effect of hydrogen mole fraction to the performance of solid oxide fuel cell,
the hydrogen mole fraction 0.04, and 0.2 are used in the initial values. The plots of the distribution of
the hydrogen mole fraction in the anode electrode and anode flow channel with the initial hydrogen
mole fraction 0.04, and 0.2, respectively, are shown in figure 5. The highest value of the hydrogen
mole fraction is at the inlet and gradually decrease with quite same pattern for both initial values.
Figure 6 is the plots of the electrolyte current density in the center of the solid oxide fuel cell with
the the initial hydrogen mole fraction 0.04, and 0.2, respectively. The high current density is located
at the end of the solid oxide fuel cell for the initial hydrogen mole fraction 0.04 while the high current
density is located at the center of the solid oxide fuel cell for the initial hydrogen mole fraction 0.2.
The polarization curves of the solid oxide fuel cell with the initial hydrogen mole fraction 0.04, and
0.2, respectively, are shown in figure 7. The initial mas fraction 0.04, the maximum average current
density is around 2,700 A/m? which is more than other around 500 A/m?.

4. Conclusion and Discussion

The variety of fuels can used for feeding solid oxide fuel cell. The biofuel of biogas are the government
support fuel in Thailand. In this research, the effect of the hydrogen mass fraction is investigated when
the biofuel and biogas are changed to hydrogen due to the chemical reactions. A mathematical model
of solid oxide fuel cell is fully coupled the mass transport equations, the Maxwell-Stefan Equations, the
Navier-Stoke Equations and the Brinkman equations with the appropriate boundary conditions. The
governing equations and boundary conditions are solved using Comsol Multiphysic 5.2. The results
indicate that increase the mass fraction, the average current density as shown in polarization graph
is not increase. The electrolyte current density with hydrogen initial mass fraction 0.2 has the good
distribution at the center of the solid oxide fuel cell. However, the initial mass fraction of hydrogen is
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FIGURE 7. Polarization curve with the initial mass fraction wy, = 0.04, 0.2, respectively

used only 2 values. To improve the results more values of the hydrogen mole fraction have to taken
into account to find the relation between hydrogen mass fraction with the performance of the solid
oxide fuel.
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Mathematical Analysis of the Planar Solid Oxide Fuel
Cell: Temperature Effects

Abstract: In this work, a mathematical model for a planar solid oxide fuel cell has
been developed to analyse the effect of temperature on the performance of the fuel
cell. Chemical reaction and porosity in the cathode and anode, and the temperature
effect are taken into account in the mathematical model. The governing equations
include the current balance equations, the mass transport equations, the Navier-
Stokes equations, and the Brinkman equations. The simulation results of the solid
oxide fuel cell for temperatures 700-1500 K show that the highest performance
of the solid oxide fuel cell is achieved at temperature 800 K.

Keywords: mathematical model, solid oxide fuel cell, chemical reaction, current
balance equations, mass transport equation, Navier-Stoke equations, Brinkman
equation

Reference to this paper should be made as follows: XXxXx (XXXX) ‘XXXX’, XXXX,
Vol. x, No. X, pp.XXX—XXX.

1 Introduction

Hydrogen energy is an alternative energy. Due to the pollution, global warming, and the
limitation of fossil fuel, hydrogen energy may be a solution these problems. Hydrogen
is high in energy and engines that use hydrogen as fuel produce almost no pollution. A
fuel cell is a device that can convert fuel directly into electricity using chemical energy.
The fuel cell will produce electricity as long as fuel is supplied. Solid oxide fuel cells
(SOFCs) offer great flexibility in the choice of fuels; not only pure hydrogen, but also many
reformate composition consisting of multi-component species maybe used as fuel, such as
water (H2Q), carbonmonoxide (C'O), carbondioxide (C'Os), including biofuel. The planar
design of SOFCs has the higher power density and simplicity in manufacturing than the
tubular design [7, 8, 11]. Therefore, the planar SOFCs are widely used in both small and
large scale applications.

The electrolyte of SOFCs normally use a solid material, and the most commonly used
material is a ceramic material called yttria-stabilized zirconia (YSZ). SOFCs operate at the
high temperature, around 1000 °C'. Due to the high temperature operation, there are some
problems in SOFCs such as internal stresses arising from thermal shocks or heat cycles,
nonhomogeneous temperature distribution, and thermal expansion of the cell components
[8].

Over the last decade, many studies have been carried out to investigate various
phenomena in SOFCs. In 2006, Bove and Ubertini [2] studied the phenomena in each
component of solid oxide fuel cell using a three-dimensional, time-dependent numerical
model. The results indicate that the boundary conditions strongly affect the accuracy of the
model and represent a significant part of the computational effort. In 2006-2007, Hussain
and Dincer [7, 8] developed a mathematical model to describe the transportation of multi-
component species inside the porous solid oxide fuel cell anodes. Their model can apply both



2 Mathematical Analysis of Planar SOFC

pure hydrogen and reformate composition such as water, methane, carbon dioxide as a fuel.
By using the finite-volume method, they found that the anode concentration overpotential
in an anode-supported SOFC is about four orders of magnitude smaller than the anode
ohmic overpotential at the reaction zone layers. In 2011, Meng Ni [11] developed a two
dimensional thermo-electrochemical model to investigate the performance of planar solid
oxide fuel cells running on ammonia by integrating a two dimensional computational fluid
dynamics model with an electrochemical model as well as a chemical model. The result
indicates that the inclusion of N Hj in the solid oxide fuel cell impacts the electric output
and temperature field. Pengfei Fan, Guojun Li, Yikai Zeng, and Xiongwen Zhang [5] used
the finite element model to study the effect of thermal stresses on a planar solid oxide fuel
cell. By using the Abaqus commercial finite element software, they found that cracks could
probably found in the anode structure when the SOFC structure is at room temperature.

Temperature distribution was measured in a large solid oxide fuel cell short stack by
using experiments. It is found that the temperature distribution is uniform in the short stack
[14, 3, 17]. Due to the high operating temperature, the practical application of the SOFCs
is limited. Recently, a number of studies investigate the effects of lowering temperature in
SOFCs [4, 18, 6, 12]. Some work has also been done to investigate the fuel cell performance
[1, 13, 15]. In this work, fully coupled mathematical model of the cathode, anode, and
electrolyte is developed to investigate the effect of operation temperature in the system
performance.

2 Mathematical Model

In SOFCs, negative charged oxygen ions travel from the cathode to the anode; while in other
types of fuel cells, positive charged hydrogen ions travel from the cathode to the anode.
Oxygen gas which fed through the cathode reacts with electrons to produce oxygen ions.
Then the oxygen ions travel to the electrolyte and react with hydrogen gas at the anode.
At the anode, the chemical reaction produces electricity and water. By using hydrogen as
a fuel, carbon dioxide is not produced. The chemical reactions for the SOFC system are
given below.

The chemical reactions in the anode and cathode can be described respectively be the
formulae below,

Hy+ 0> — Hy0 + 2e”

1
502 + 26_ — 02_.

The overall reaction is 1
502 + Hy — H50.

When using carbon monoxide fuel, the chemical reaction of the SOFC at the anode is
2C0 +20% — 2005 + 4e~;
while at the cathode, the reaction is
Oy 4+ 4e~ — 207,

and the overall cell reaction is

2C0 4+ Oy — 2C0s.
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At high temperature, carbon monoxide can be oxidized by water to form carbon dioxide
and hydrogen gas due to the water-gas-shift reaction [13]. The chemical reaction at the
anode is

2H, + 20%~ — 2H,0 + 4e~;

while at the cathode, the reaction is
Oy + 4e~ — 2077,
and the overall reaction is
2C0O + 2H50 — 2CO0s + 2H,.

When using hydrocarbons (C,, H,,,) as fuel, the chemical reaction of the SOFC at the
anode, cathode, and the overall cell reaction are as follow;

CpHp + (20 +0.5m)0*™ — nCOy + (0.5m) HyO + (4n +m)e™,
p=2n+0.5m

(n +0.25m)0y + (4n +m)e” — (2n + 0.5m)0 ",
CpnHy + (n+0.25m)0s — nCOy + (0.5m)Hy0.

2.1 Computational Domain

A SOFC design geometry commonly include planar or tubular type geometry, where the
electrolyte is sandwiched in between the electrodes. A planar single cell of SOFC is shown
in Figure 1. In this work, a unit cell planar SOFC domain is used which consists of three
main parts including the cathode, electrolyte (£23) and anode. The anode consists of the
anode flow channel (€2;) and the anode electrode (£25); the cathode consists of the cathode
electrode (€24) and the cathode flow channel (£25) as shown in Figure 2. Electric current is
distributed in the cathode electrode, electrolyte, and anode electrode. Cathode and anode
are porous media. The concentrated species are transported in the cathode and anode. The
dimension of a typical planar solid oxide fuel cell [10, 16] is shown in Table 2.1.

Table 1 Planar solid oxide fuel cell geometry

Anode thickness (m) 5x 107°
Cathode thickness (m) 5x 107°
Electrolyte thickness (m) 2x 1075
Gas flow channel thickness (m) 5 x 10~%
Flow channel width (m) 5x 1074
Flow channel length (m) 1x1072

2.2 Governing Equations

The modeling problem includes secondary current distribution, transport of concentration
species and porous media. To model the phenomena in the anode electrode and reaction zone
layers, the governing equations include the conservation of species equation, the Stefan-
Maxwell equations, the Knudsen diffusion equation for multi-component gas diffusion, and
the Butler-Volmer equation, which are detailed below.
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Anode
Fuel ¥ Electrolyte
Cathode
Cell 4mAir
Repeat
Unit

Interconnect

Figure 1 Three dimensional of a single cell planar solid oxide fuel cell.

Cathode Flow Channel

Cathode Electrode
Electrolyte
Anode Electrode

Anode Flow Channel

Figure 2 Configuration of a unit cell solid oxide fuel cell.

Figure 3 Computational domain for a unit cell solid oxide fuel cell.
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2.2.1 Current Distribution

The current balance in the electrolyte is governed by
VJ:Q7 in Q2>Q37 Q4 (1)

where J denotes the current density vector in the electrolyte, Q can be any source or sink.

Assume that the Butler-Volmer charge transfer kinetics describe the charge transfer
current density. Hydrogen is reduced to form water at the anode. Thus, the first transfered
electron is assumed to be the rate determining step. The charge transfer kinetics equation
is applied as follow:

Ch2 0.5F Ch20 —1.5F
a,ct — al|l T - ) 2
Qa,ct = Qo, <Ch2’ref exp ( T 17) Chzomes exp < T n)) 2

where Qg , is the anode exchange current density (A/ m?), cpe is the molar concentration
of hydrogen, cy2, is the molar concentration of water, ¢, is the total concentration of species
(mol/ md), Ch2,ref and cp2o rey are the reference concentrations (mol / m3). Furthermore,
F is Faraday’s constant (C'/mol), R is the gas constant (J/(mol - K)), T is the temperature
(K), and n is the overvoltage (V).

1 = Gelectronic — Pionic — AQﬁeq 3)

where A¢., is the equilibrium potential difference (V') [8]. The concentration dependent
kinetics expression is used to set up the above charge transfer expressions.
In the cathode, the following relation is used,

3.5F Ct —0.5F
— . —n | — 4
Qc,ct QO,L (exp ( RT 77) To2 Cogref exXp ( RT 7])) ) ( )

where Qo . is the cathode exchange current density (A/ m?), and z, is the molar fraction
of oxygen.

At the anode’s inlet boundary, the potential is fixed at a reference potential of zero. At
the cathode’s inlet boundary, set the potential to the cell voltage, V..;;. The latter is given
by

Veetl = A¢eq,c - A¢eq,a - Vpol (5)
where V), is the polarization.

2.2.2 Transport of Species

The mass transport equation for an individual species i = 1,...,Q is
V-ji+V-:(pwu) =R, inQq, Qo, Q4, Qs5, (6)

where, p is the mixture density and u is the mass average velocity of the mixture. The

remaining variables are specific for the species, ¢, which is being described by the mass
transfer equation, w; is the mass fraction of specie ¢, j; is the mass flux relative to the mass
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average velocity, and R;; is the rate expression describing its production or consumption.
The relative mass flux vector j; can include contributions due to molecular diffusion and
thermal diffusion.

In the Maxwell-Stefan diffusion model, the relative mass flux vector is

T

. Di
ji = —pwiX?_ Dipdy — VT )

where D;; are the multicomponent of Fick’s first law diffusivity matrix [9], dj is the
diffusion driving force, T' is the temperature, and D;f is the thermal diffusion coefficient.
The diffusional driving force is defined as

1

d, =Vz, + Z; (Ik — Ck) VZ% ®)

Wk
. = 7Mn7
= ©9)
o -1

M, = (5 i ' 1

( Mi) (10)

2.2.3 Porous Media Flow

The Navier-Stokes equations are use to describe the flow in the open regions, and the
Brinkman equations are used for the flow in porous regions, namely

V- (pV) = 0, in Ql, QQ, Q4, Q5 (11)

2
p(v-V)v=V-: {—pcI—F,u (Vv—|— (VV)T) — 3/,L(V'V)I:| + F, (12)
in le Q27 Q47 QS

V- (pv) = Qpr in g, Qy, (13)
v miz=v. {—pn“ (vv+(vv)T)
€ € €

Qbr

€2

o

2 (V) 1} (14)

—(M+BF|V+ >V+F in Qs, Qu,
Rbr

where p is the dynamic viscosity, v is the velocity vector, p is the density, p is the pressure,
€ is the porosity, « is the permeability of the porous medium, and @)y, is a mass source or
sink, S |v|v is the viscous force proportional to the square of the fluid velocity where Sp
is the Forchheimer drag option.
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Figure 4 Computational mesh for a unit cell solid oxide fuel cell.

2.3 Boundary Conditions

The fuel feed in the cathode and anode is counterflow, with hydrogen-rich anode gas entering
from the left. For the ionic charge balance equations in cathode electrode, electrolyte, and
anode electrode, we apply the insulating boundary conditions on all external boundaries as
shown below.

—n-J=0. (15)

For the transport of species in anode, initial mass fraction is set (wp, = 0.4) on the left
of the anode flow channel, and the outflow is on the right of the anode flow channel. No
flux boundary condition is applied to all external boundaries of the anode electrode and the
anode flow channel as given below.

—n - (j; + puw;) = 0. (16)

3 Numerical Result

To find the numerical solutions of the model, the Comsol Multiphysics commercial package
was used. The computational mesh consists of 10,600 hexahedral elements as shown in
Figure 4.

At temperature 1000 K, the oxygen mole fraction in the SOFC from the simulation is
shown in Figure 5. The maximum value of the oxygen mole fractions in the cathode occurs
on the outflow channel. The values are between 0.1020 and 0.1104. Hydrogen mole fraction
is shown in Figure 6. The maximum value of the hydrogen mole fractions in the anode
occurs on inlet. The values are between 0.8383 and 0.8563. The electrolyte current density
vector in z direction is plotted along the central of the electrolyte layer as shown in Figure
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Ao1104
o

Figure 5 The oxygen mole fraction at temperature 1000 K.

<

384
¥ 383.56

Figure 7 The surface plot of the electrolyte current density vector (z component) (A/m?) at
temperature 1000 K.

7. The maximum value is on the inlet boundary. The values are between 383.56 and 404.4
A/m?.

To investigate the effect of temperature on the performance of the SOFCs, the
polarization curves at difference temperature are shown in Figure 8. It is clearly shown that
the average current density for temperature at 800 K is higher than those SOFC operated
at other temperatures.

4 Conclusions

A mathematical model of SOFCs is developed which fully couples the mass transport
equations, the Maxwell-Stefan Equations, the Navier-Stoke Equations and the Brinkman
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equations. The results from simulation show that the maximum value of oxygen mole
fractions in the cathode is located on the outflow channel. The distribution of oxygen and
hydrogen mole fraction are shown. The polarization curves show that the highest average
current density is achieved when the temperature is at 800 K. The results are consistent with
those experiment results in literature. The lower operation temperature may achieve better
performance and higher reliability for SOFCs [5]. However, we shall address that the effect
of stress, fuel cell geometry, chemical reactions may also affect the SOFC performance and
reliability. For further work, some more complexity behavior of the SOFCs will be taken
into account for the system performance investigation.
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